Nokia Customer Care

6-Troubleshooting Instructions

[This page left intentionally blank]

Table of Contents

Page No

Baseband troubleshooting	7
Baseband test points	. 7
Troubleshooting diagrams	. 7
Phone is dead	. 8
Flash programming do not work	. 9
Power does not stay on or phone is jammed	10
Display information : "Contact Service"	11
The phone do not register to the network, or the phone cannot make a call	12
Insort SIM card fault	13
SIM-Card rejected	1/
Audio related faults 1: Farniece and micronhone	14
Audio related faults 2: Headeet	16
Charging failure troublesbooting	17
Charging troubleshooting 2	18
	10
General RF Troubleshooting	19
RF key component placement	20
RH-60 Receiver Troubleshooting	23
General instructions for GSM850 RX troubleshooting	23
Troubleshooting diagram for GSM850 Receiver	24
General instructions for RH-60 GSM1900 RX troubleshooting	26
Phoenix commands	26
Troubleshooting diagram for GSM1900Receiver	27
Measurement points in the receiver	29
RH-60 transmitter troubleshooting	31
Measurement points for the transmitter	31
General instructions for RH-60 GSM TX troubleshooting	32
GSM850 TX output power	33
General instructions for RH-60 GSM1900 TX troubleshooting	34
Phoenix commands	34
GSM1900 TX output power	34
Troubleshooting diagram for GSM1900 TX	35
General Instructions for RH-59 GSM900 RX Troubleshooting	37
Troubleshooting chart for GSM900 receiver	38
General instructions for GSM1800 RX troubleshooting	40
Troubleshooting Chart for GSM1800Receiver	41
Measurement points in the receiver	42
RH-59 Transmitter troubleshooting	44
Measurement points for the transmitter	44
General instructions for RH-59 GSM TX troubleshooting	45

PCN Transmitter general instructions for PCN TX troubleshooting	47 48
26 MHz Reference Oscillator (VCXO)	48
VCO	48
Troubleshooting diagram for PLL Synthesizer	49
Phone fails after power on	50
Measurement points at the VCXO	50
Measurement points at the PLL/VCO	51

List of Figures

	Page No
Fig 1	Phone is dead troubleshooting
Fig 2	Flash programming fault7
Fig 3	Phone jammed troubleshooting
Fig 4	Troubleshooting when Contact Service message seen
Fig 5	No call troubleshooting10
Fig 6	SIM troubleshooting
Fig 7	Signal diagram
Fig 8	Signal diagram
Fig 9	Top: Earpiece troubleshooting, bottom: Microphone troubleshooting
Fig 10	Headset troubleshooting14
Fig 11	Charging troubleshooting 1 15
Fig 12	Charging troubleshooting 2 16
Fig 13	RF key components 18
Fig 14	Supply points at UEM (D200) 19
Fig 15	Supply point at Mjoelner (N600) 19
Fig 16	GSM850 RF controls window21
Fig 17	GSM850 Receiver troubleshootingt 22
Fig 18	RX850 I/Q signal waveform23
Fig 19	GSM1900 RF controls24
Fig 20	GSM1900 receiver troubleshooting diagram25
Fig 21	RX1900 I/Q signal waveform26
Fig 22	RX measurements point at the RX/TX Switch - Z700
Fig 23	Measurements points at the RX-Filters – Z601/Z602
Fig 24	RX I/Q signals, baseband shielding can UEM (D200)
Fig 25	TX measurement points in the PA (N700) shielding can
Fig 26	TX measurement point in Mjolner (N600) shielding can
Fig 27	:GSM850 RF controls window
Fig 28	VPCTRL_G & TXC
Fig 29	GSM1900 RF controls screen shot
Fig 30	GSM1900 TX troubleshooting
Fig 31	GSM900 RF controls window
Fig 32	EGSM receiver troubleshooting chart
Fig 33	RX900 I/Q signal waveform
⊢ig 34	GSM1800 RF control window
Fig 35	GSM1800 receiver Troubleshooting chart
Fig 36	KX1800 I/Q signal waveform 40

Fig 37	RX measurements point at the RX/TX Switch - Z700	40
Fig 38	Measurements points at the RX-Filters – Z601/Z602	41
Fig 39	RX I/Q Signals, baseband shielding can UEM (D200)	41
Fig 40	TX measuremnet points in the PA (N700) shielding can	42
Fig 41	TX measurement point in Mjolner (N600) shielding can	42
Fig 42	GSM900 RF controls window	43
Fig 43	VPCTRL_G and TXC signal	44
Fig 44	RF controls window	45
Fig 45	VCXO 26 MHz waveform	46
Fig 46	PLL Troubleshooting diagram	47
Fig 47	Figure 22: Measurement point for VCXO supply	48
Fig 48	Figure 23: Measurement point for VCXO output	48
Fig 49	Measurement point for PLL	49

[This page left intentionally blank]

Baseband Troubleshooting

Baseband test points

This document contains the Nokia 2600 troubleshooting diagrams.

Test points are described and listed in the A3 schematic diagrams.

Troubleshooting diagrams

In this section, Troubleshooting diagrams is provided for the most common problems of the Nokia 2600

NOTE : Since both D200 (UEM) and D400(UPP) are underfilled, they can not be replaced. If either D200 or D400 is defective, the whole PWB has be discarded.

Phone is dead

This means that the phone do not draw any current at all when supply is connected and/or powerkey is pressed.

It is assumed that the voltage supplied is 3.6 VDC. The UEM will prevent any functionality what so ever at battery/supply levels below 2.9 VDC.

Figure 1: Phone is dead troubleshooting

Flash programming do not work

The flash programming can only be done via the pads on the PWB (J396).

In case of Flash failure in FLALI station, problem is most likely related to SMD problems. Possible failures could be short-circuit of balls under μ BGAs (UEM, UPP, FLASH). Missing or misaligned components.

In flash programming error cases the flash prommer can give some information about a fault. The fault information messages could be:

- Phone doesn't set FBUS_TX line low

Because of the use of uBGA components it is not possible to verify if there is a short circuit in control- and address lines of MCU (UPP) and memory (flash).

Figure 2:Flash programming fault

Power does not stay on or phone is jammed

If this kind of failure is presenting itself immediately after FLALI, it is most likely caused by ASICs missing contact with PWB.

If for some reason the MCU does not service the watchdog register within the UEM, the operations watchdog will run out after approximately 32 seconds. Unfortunately, the service routine can not be measured.

Figure 3: Phone jammed troubleshooting

Display information : "Contact Service"

This error can only happen at power up where several self-tests is run. If any of these test cases fails the display will show the message: "Contact Service".

It's individual test cases so the below lineup of error hunting's has no chronological order. Use common sense and experience to decide which test case to start error hunting at.

The phone do not register to the network, or the phone cannot make a call

If the phone doesn't register to the network, the fault can be in either BB or RF. Only few signals can be tested since several signals is 'burried' in one or more of the inner layers of the PWB.

First of all check that SIM LOCK is not causing the error by using a Test-SIM card and connect the phone to a tester.

Figure 5:No call troubleshooting

SIM related faults

Insert SIM card fault

The hardware of the SIM interface from UEM (D200) to the SIM connector (X387) can be tested without a SIM card. When the power is switched on the phone first check for a 1,8V SIM card and then a 3V SIM card. The phone will try this four times, whereafter it will display "Insert SIM card".

Figure 6:SIM troubleshooting

Figure 7:Signal diagram

Check for SIM voltage during por	wer-up
Ch1 : VSIM Ch2 : RESET	Ch3 : CLOCK Ch4 : DATA

SIM-Card rejected

The error "SIM card rejected" means that the ATR message received from SIM card is corrupted, e.g. data signal levels are wrong. The first data is always ATR and it is sent from card to phone.

For reference a picture with normal SIM power-up is shown below.

Normal SIM power-up sequence	
Ch1 : VSIM	Ch3 : CLOCK
Ch2 : RESET	Ch4 : DATA

Figure 8:Signal diagram

Audio related faults 1: Earpiece and microphone

Figure 9:Top: Earpiece troubleshooting, bottom: Microphone troubleshooting

Audio related faults 2: Headset

Figure 10:Headset troubleshooting

Charging failure troubleshooting

Figure 11: Charging troubleshooting 1

Charging troubleshooting 2

Figure 12: Charging troubleshooting 2

General RF Troubleshooting

Two types of measurements are used in the following. It will be specified if the measurement type is "RF" or "LF".

• • RF measurements are done with a Spectrum Analyser and a high-frequency 500 ohm passive probe, for example HP54006A. (Note that when measuring with the 500 ohm probe the signal will be around 20 dB attenuated. The values in the following will have these 20 dB subtracted and represent the real value seen on the spectrum analyser).

Note that the testjig have some losses which must be taken into consideration when calibrating the test system.

• • LF (Low frequency) and DC measurements should be done with a 10:1 probe and an oscilloscope. The probe used in the following is 10MW/8pF passive probe. If using another probe then bear in mind that the voltages displayed may be slightly different.

Always make sure the measurement set-up is calibrated when measuring RF parameters on the antenna pad. Remember to include the loss in the module repair jig when realigning the phone.

Most RF semiconductors are static discharge sensitive. So ESD protection must be applied during repair (ground straps and ESD soldering irons). Mjoelner and Bifrost is moisture sensitive so parts must be pre-baked prior to soldering.

Apart from key-components described in this document there are a lot of discrete components (resistors, inductors and capacitors) for which troubleshooting is done by checking if soldering of the component is done properly and checking if the component is missing from PWB. Capacitors can be checked for short-circuiting and resistors for value by means of an ohmmeter, but be aware in-circuit measurements should be evaluated carefully.

In the following both the name EGSM and GSM850 will be used for the lower band and both PCN and GSM1900 will be used for the upper band.

RF key component placement

Figure 13:RF key components

Table 1: RF component placement

N600	Mjoelner RF IC
Z601	PCN RX SAW
Z602	EGSM RX SAW
Z603	EGSM TX SAW
B600	26 MHz crystal
G600	VCO (4.0 GHz UHF VCO)
N700	Power Amplifier (PA)
Z700	RX/TX switch

Refer to the picture below for measuring points at the UEM (D200).

Figure 14:Supply points at UEM (D200)

Figure 15:Supply point at Mjoelner (N600)

[This page left intentionally blank]

RH-60 Receiver Troubleshooting

General instructions for GSM850 RX troubleshooting

Connect the phone to a PC with the module repair jig.

Start Phoenix and establish connection to the phone

Phoenix commands

RF Controls .Band GSM 850 RX .Continuous mode

Channel 190 .AGC 8 FEG ON + 46 dB

The setup should now look like this:

K RF Controls	. 🗆 🗙
Common GSM RF Control Values Active Unit: Rx Rx/Tx Channel: 190 881.600 Band: GSM 850 AFC: 3161	0000
Operation Mode: Burst	
RX Control Values Monitor Channel: 190 881.600000	
AGC: 14: FEG_ON + 24 dB + const_BB_gain	
Edge: Off Tx Data Type: All 1	2
Lix PA Mode: [High] Ix Power Level: [5]	l l

Figure 16:GSM850 RF controls window

Troubleshooting diagram for GSM850 receiver

By measuring with an oscilloscope at RXIP or RXQP on a working GSM 850 receiver this picture should be seen.

Signal amplitude peak-peak 789 mV

DC offset 1.2 V

General instructions for RH-60 GSM1900 RX troubleshooting

Connect the phone to a PC with the module repair jig. Start Phoenix and establish connection to the phone

Phoenix commands

RF Controls .Band GSM 1900 RX .Continuous mode

Channel 661 .AGC 8 FEG ON + 46 dB

The setup should now look like this:

	Figure	19:GSM190	00 RF (controls
--	--------	-----------	---------	----------

K RF Controls
Common GSM RF Control Values Minimize
Active Unit 🗮 💌 Rx/Tx Channel: 661 1960.000000
Band: GSM 1900 💌 AFC: 3161
Operation Mode: Burst
RX Control Values
Monitor Channel: 661 1960.000000
AGC: 14: FEG_ON + 24 dB + const_BB_gain
TX Control Values
Edge: Off 🝸 Tx Data Type: All 1 🝸
Tx PA Mode: High 🔻 Tx Power Level: 5 💌
<u>C</u> lose <u>H</u> elp

Troubleshooting diagram for GSM1900 receiver

RH-59/60

By measuring with an oscilloscope at RXIP or RXQP on a working GSM 1900 receiver this picture should be seen.

Signal amplitude peak-peak 460 mV

DC offset 1.2 V

1: TP37: RX IQ signal (GSM1900, Continuous Mode, Signal level -90 dBm)

Measurement points in the receiver

Figure 22:RX measurements point at the RX/TX Switch - Z700

Figure 23:Measurements points at the RX-Filters – Z601/Z602

Figure 24:RX I/Q signals, baseband shielding can UEM (D200)

RH-60 transmitter troubleshooting

Measurement points for the transmitter

Figure 25: TX measurement points in the PA (N700) shielding can

Figure 26:TX measurement point in Mjolner (N600) shielding can

General instructions for RH-60 GSM TX troubleshooting

Apply a RF-cable to the RF-connector to allow the transmitted signal act as normal. RF-cable should be connected to measurement equipment or to at least a 10-dB attenuator, otherwise the PA may be damaged.

Start Phoenix-Service-Software and establish a connection to the phone e.g. FBUS.

Select File and Product: Gemini

Select: Maintenance, Testing and RF Controls

Band:GSM 850

Active Unit:TX

Tx Power Level:5

Tx Data Type:Random

Your screen should look like:

Figure 27::GSM850 F	RF controls	window
---------------------	--------------------	--------

Common GSM RF Control Value	35
Active Unit: 🛛 💌	Rx/Tx Channel: 190 836.60000
Band: GSM 850	 AFC: 3155
Operation Mode: Burst	•
2002 0000	
RX Control Values	
RX Control Values Monitor Channel: 190 881.6	500000
RX Control Values Monitor Channel: 190 881.6 AGC: 14: FEG: ON + 24 dB + (500000 const BB gain
RX Control Values Monitor Channel: 190 881.6 AGC: 14: FEG_ON + 24 dB + (600000 const_BB_gain
RX Control Values Monitor Channel: 190 881.6 AGC: 14: FEG_ON + 24 dB + (TX Control Values	G00000 const_BB_gain
RX Control Values Monitor Channel: 190 881.6 AGC: 14: FEG_ON + 24 dB + 0 TX Control Values Edge: Off T	600000 const_BB_gain 💌 Tx Data Type: All 1 💌
RX Control Values Monitor Channel: 190 881.6 AGC: 14: FEG_ON + 24 dB + 6 TX Control Values Edge: Off Tx PA Mode: High	S00000 const_BB_gain Tx Data Type: All 1 Tx Power Level: 5

GSM850 TX output power

Measure the output power of the phone; it should be around 32.1 dBm. Remember the loss in the jig; around 0.3 dB.

Figure 28:VPCTRL_G & TXC

General instructions for RH-60 GSM1900 TX troubleshooting

Apply a RF-cable to the RF-connector to allow the transmitted signal act as normal. RF-cable should be connected to measurement equipment or to at least a 10-dB attenuator, otherwise the PA may be damaged.

Start Phoenix-Service-Software and establish a connection to the phone e.g. FBUS.

Phoenix commands

RF Controls .Band GSM 1900 RX .Continuous mode

Channel 661

Your screen should look like:

Controls	
Common GSM RF Control Value Active Unit: Tx 💌 Band: GSM 1900	es Rx/Tx Channel: 661 1880.000000 AFC: 3155
Operation Mode: Burst	•
Monitor Channel: 661 1960),000000
AGC: 14: FEG_ON + 24 dB +	const_BB_gain 🗾
AGC: 14: FEG_ON + 24 dB + TX Control Values Edge: Off	const_BB_gain 💌
AGC: 14: FEG_ON + 24 dB + TX Control Values Edge: Off Tx PA Mode: High	const_BB_gain 💌 Tx Data Type: All 1 💌 Tx Power Level: 🚺 💌

GSM1900 TX output power

Measure the output power of the phone.

It should be around 29.7 dBm.

Remember the loss in the jig; around 0.7 dB.

Troubleshooting diagram for GSM1900 TX

[This page left intentionally blank]

General Instructions for RH-59 GSM900 RX Troubleshooting

Connect the phone to a PC with the module repair jig.

Start Phoenix and establish connection to the phone

Phoenix commands

RF Controls .Band GSM 900 RX .Continuous mode

Channel 37. AGC 8 FEG ON + 46 dB

The setup should now look like this:

Figure 31:GSM900 RF controls window

🌃 Ph	oenix
File	Edit Product Flashing Testing Tuning Tools Window Help
Oper	rating mode: Local 💌 Read
Ľ	RF Controls
	Common GSM RF Control Values
	Active Unit: 🗛 💌 Rx/Tx Channel: 37 942.400000
	Band: GSM 900 💌 AFC: 3146
	Operation Mode: Burst
	RX Control Values
	Monitor Channel: 37 942.400000
	AGC: 14: FEG_ON + 24 dB + const_BB_gain
	TX Control Values
	Edge: Off 💌 Tx Data Type: All 1 💌
	Tx PA Mode: High 💌 Tx Power Level: 5 💌
	<u>C</u> lose <u>H</u> elp

Troubleshooting chart for GSM900 receiver

By measuring with an oscilloscope at RXIP or RXQP on a working GSM 900 receiver this picture should be seen.

Signal amplitude peak-peak 789 mV

DC offset 1.2 V

Figure 33:RX900 I/Q signal waveform

General instructions for GSM1800 RX troubleshooting

Connect the phone to a PC with the module repair jig.

Start Phoenix and establish connection to the phone

Phoenix commands

RF Controls .Band GSM 1800 RX .Continuous mode

Channel 700 .AGC 8 FEG ON + 46 dB

The setup should now look like this:

🌃 Phoenix	
File Edit Product Flashing Testing Tuning Tools Window Help	
Operating mode: Local 💌 Read	
KRF Controls	
Common GSM RF Control Values	
Band: GSM 1800 AFC: 3146	
Operation Mode: Burst	
RX Control Values	
Monitor Channel: 700 1842.800000	
AGC: 14: FEG_ON + 24 dB + const_BB_gain	
TX Control Values	
Edge: Off 💌 Tx Data Type: All 1 💌	
Tx PA Mode: High 💌 Tx Power Level: 5 💌	
<u>C</u> lose <u>H</u> elp	

Troubleshooting chart for GSM1800 receiver

RH-59/60

XIP or RXQP on a working GSM 1800 receiver this picture should be seen.

Signal amplitude peak-peak 460 mV

DC offset 1.2 V

Figure 36:RX1800 I/Q signal waveform

Measurement points in the receiver

Figure 37:RX measurements point for the RX/TX Switch - Z700

Figure 38:Measurements points for the RX-Filters – Z601/Z602

Figure 39:RX I/Q Signals, baseband shielding can UEM (D200)

RH-59 Transmitter troubleshooting

Measurement points for the transmitter

Figure 41:TX measurement point for Mjolner (N600) shielding can

General instructions for RH-59 GSM TX troubleshooting

Apply a RF-cable to the RF-connector to allow the transmitted signal act as normal. RF-cable should be connected to measurement equipment or to at least a 10-dB attenuator, otherwise the PA may be damaged.

Start Phoenix-Service-Software and establish a connection to the phone e.g. FBUS.

Select File and Product: RH-59

Select: Maintenance, Testing and RF Controls

Band:	GSM 900
Active Unit:	TX
Tx Power Level:	19
Tx Data Type:	All 1

Your screen should look like:

Figure 42:GSM900 RF controls window

🌃 Phe	penix
File B	Edit Product Flashing Testing Tuning Tools Window Help
Oper	ating mode: Local 💌 Read
Z	RF Controls
	Common GSM RF Control Values
	Active Unit: 🛛 💌 🛛 🗛 🗐 🖉 Rx/Tx Channel: 37 942.400000
	Band: GSM 900 💌 AFC: 3146
	Operation Mode: Burst
	RX Control Values
	Monitor Channel: 37 942.400000
	AGC: 14: FEG_ON + 24 dB + const_BB_gain
	TX Control Values
	Edge: Off 💌 Tx Data Type: All 1 💌
	Tx PA Mode: High 💌 Tx Power Level: 5 💌
	<u>C</u> lose <u>H</u> elp

Measure the output power of the phone; it should be around 32.1 dBm. Remember the loss in the jig; around 0.3 dB.

PCN Transmitter general instructions for PCN TX troubleshooting

Apply a RF-cable to the RF-connector to allow the transmitted signal act as normal. RF-cable should be connected to measurement equipment or to at least a 10-dB attenuator, otherwise the PA may be damaged.

Start Phoenix-Service-Software and establish a connection to the phone e.g. FBUS.

Phoenix commands

RF Controls .Band GSM 1800 RX .Continuous mode

Channel 700 .AGC 14 FEG ON + 24 dB

Your screen should look like:

Figure 44:RF controls window

🌾 Phoenix
File Edit Product Flashing Testing Tuning Tools Window Help
Operating mode: Local 💌 Read
RF Controls
Common GSM RF Control Values Active Unit: Rx T Rx/Tx Channel: 700 1842.800000 Band: GSM 1800 T AFC: 3146
Operation Mode: Burst
RX Control Values
Monitor Channel: 700 1842.800000
AGC: 14: FEG_ON + 24 dB + const_BB_gain
TX Control Values
Edge: Off 💌 Tx Data Type: All 1 💌
Tx PA Mode: High 💌 Tx Power Level: 5 💌
<u>C</u> lose <u>H</u> elp

Measure the output power of the phone; it should be around 29.5 dBm. Remember the loss in the jig; around 0.7 dB.

Troubleshooting chart for PCN transmitter: refer to Figure 30 "GSM 1900 transmitter troubleshooting diagram on page 33.

Note! The word PCS in "start" block should be PCN if this block is used for RH-59 troubleshooting.

Synthesizer

There is only one PLL synthesizer generating Local Oscillator frequencies for both RX and TX in both bands (PCN and EGSM). The VCO frequency is divided by 2 for PCN operation or by 4 for EGSM operation inside the Mjoelner IC.

26 MHz reference oscillator (VCXO)

The 26 MHz oscillator is located in the Mjoelner IC (N600). The coarse frequency for this oscillator is set by an external crystal (B600). The reference oscillator is used as a reference frequency for the PLL synthesizer and as the system clock for BaseBand. The 26MHz signal is divided by 2 to achieve 13MHz inside the UPP IC (D400).

The 26 MHz signal from the VCXO can be measured by probing R425 (must be measured on the UPP side of R425 i.e. the end **not** connected to C425). The level at this point is approx. 700mVpp. Frequency of this oscillator is adjusted by changing the AFC-register inside the Mjoelner IC. This is done via the Mjoelner serial interface.

Example Signal Measured at VCXO output (R425)

Figure 45: VCXO 26 MHz waveform

VCO

The VCO is an ASIC with all the frequency determining parts inside.

In order to reduce the requirements of the tuning voltage and coverage of the VCO, the VCO core is composed of four VCOs in parallel. This VCO circuit enables a very wide tun-ing range of 3.4 - 4.0 GHz.

Troubleshooting diagram for PLL Synthesizer

Figure 46:PLL Troubleshooting diagram

Phone fails after power on

If the phone stops working a short time after the power is turned ON, a possible reason for this could be that the 26MHz system clock signal is not getting to the UPP clock-input in BaseBand. In this case check the following:

1Turn on the phone and check

2VCXO Power supply (C620) = 2.7V

3VCXO output (R425 - end not connected to C425) is 26MHz and approx. 700mVpp

If this is not the case check the reference crystal (B600) and Mjolner (N600) as well as R425, R426, C425, C426.

Measurement points for the VCXO

Figure 47: Figure 22: Measurement point for VCXO supply

Figure 48:Figure 23: Measurement point for VCXO output

Measurement points at the PLL/VCO

Figure 49:Measurement point for PLL

[This page left intentionally blank]